https://link.springer.com/article/10.1007/s12052-007-0001-z
Evolution as Fact, Theory, and Path
Introduction
With its vocabulary of hundreds of thousands of words, one might expect English to boast a surplus of ways to express different concepts. Indeed, there are many well-known examples of multiple descriptors for the same item or idea, often one or more from the Germanic and others from the Latinate roots of modern English. In addition to the diversity resulting from a history of linguistic hybridization, English has a tendency to assimilate words from other languages and to include the de novo creation of terms as the need arises. Thus, most technically complex professions exhibit a plethora of neologisms and jargon that can be all but impenetrable to nonexperts. Science is certainly no exception in this regard.
However, when it comes to some of the most fundamental concepts in science, there is a dearth of unambiguous terminology. Worse still, words with relatively clear meanings in the vernacular are employed with very different definitions in science, a phenomenon that greatly confuses discussions of science when they are conducted in nonscientific contexts. For example, terms such as “energy” or “force” have specific meanings in physics that are easily confused when commingled with their common usages. This ambiguity has been exploited to considerable advantage by many a huckster who falsely invokes the respectability of science in the sale of products that would, in actuality, contradict well established scientific principles if they really exerted any of their claimed effects.
Even more generally, terms relating to the process and products of science itself, such as “theory” and “law”, are almost diametrically opposite in scientific vs vernacular settings. This has been a source of both honest confusion and intentional obfuscation in discussions of science, especially with regard to evolution—which has, with the full thrust of equivocation, been misleadingly labeled as “just a theory” by opponents for decades. The intent of this article is to clarify the general meaning of some central concepts in science and the terms used to describe them, and to differentiate these from the very different definitions of the same words in common usage. The specific application of these terms, as defined in science, to the topic of evolution will be discussed in some detail.
Defining Terms
Hypothesis, theory, fact, law. Prefaced with “hunch” or “guess”, this list of terms would reflect what many people consider a graded series from least to greatest degree of certainty. This ranking may be appropriate in common usage, but actually makes little sense when these words are employed in a scientific context.
Fact
“Fact” is perhaps the only term in the above list whose common and technical definitions are similar. The major difference is in the degree of certainty expressed, which is simultaneously higher and lower in scientific usage. Following the definition provided by the US National Academy of Science (NAS) (1998), one of the most prestigious scientific societies in the world, a scientific fact is “an observation that has been repeatedly confirmed, and for all practical purposes, is accepted as ‘true’.” Or, as Stephen Jay Gould (1981) put it in his inimitable style, “In science, ‘fact’ can only mean ‘confirmed to such a degree that it would be perverse to withhold provisional assent’.” It is this insistence on repeated confirmation by data—either through direct observation or reliable inference—that makes a claim to “fact” so much stronger in science. However, as the NAS points out, “truth in science is never final, and what is accepted as a fact today may be modified or even discarded tomorrow”. Small-scale details are regularly revised as more precise observations are made, whereas well established facts of fundamental significance are very rarely overthrown, but in principle, no scientific fact of any magnitude is beyond revision or refutation. As a result, scientists must maintain a balance between the confidence that comes from reinforcing conclusions about the world with repeatable data and the understanding that absolute certainty is not something that the methods of science are able or intended to deliver.
Theory
The common and scientific definitions of “theory,” unlike of “fact,” are drastically different. In daily conversation, “theory” often implicitly indicates a lack of supporting data. Indeed, introducing a statement with “My theory is...” is usually akin to saying “I guess that...”, “I would speculate that...”, or “I believe but have not attempted to demonstrate that...”. By contrast, a theory in science, again following the definition given by the NAS, is “a well-substantiated explanation of some aspect of the natural world that can incorporate facts, laws, inferences, and tested hypotheses.” Science not only generates facts but seeks to explain them, and the interlocking and well-supported explanations for those facts are known as theories. Theories allow aspects of the natural world not only to be described, but to be understood. Far from being unsubstantiated speculations, theories are the ultimate goal of science.
much more at link....
Evolution as Fact, Theory, and Path
Introduction
With its vocabulary of hundreds of thousands of words, one might expect English to boast a surplus of ways to express different concepts. Indeed, there are many well-known examples of multiple descriptors for the same item or idea, often one or more from the Germanic and others from the Latinate roots of modern English. In addition to the diversity resulting from a history of linguistic hybridization, English has a tendency to assimilate words from other languages and to include the de novo creation of terms as the need arises. Thus, most technically complex professions exhibit a plethora of neologisms and jargon that can be all but impenetrable to nonexperts. Science is certainly no exception in this regard.
However, when it comes to some of the most fundamental concepts in science, there is a dearth of unambiguous terminology. Worse still, words with relatively clear meanings in the vernacular are employed with very different definitions in science, a phenomenon that greatly confuses discussions of science when they are conducted in nonscientific contexts. For example, terms such as “energy” or “force” have specific meanings in physics that are easily confused when commingled with their common usages. This ambiguity has been exploited to considerable advantage by many a huckster who falsely invokes the respectability of science in the sale of products that would, in actuality, contradict well established scientific principles if they really exerted any of their claimed effects.
Even more generally, terms relating to the process and products of science itself, such as “theory” and “law”, are almost diametrically opposite in scientific vs vernacular settings. This has been a source of both honest confusion and intentional obfuscation in discussions of science, especially with regard to evolution—which has, with the full thrust of equivocation, been misleadingly labeled as “just a theory” by opponents for decades. The intent of this article is to clarify the general meaning of some central concepts in science and the terms used to describe them, and to differentiate these from the very different definitions of the same words in common usage. The specific application of these terms, as defined in science, to the topic of evolution will be discussed in some detail.
Defining Terms
Hypothesis, theory, fact, law. Prefaced with “hunch” or “guess”, this list of terms would reflect what many people consider a graded series from least to greatest degree of certainty. This ranking may be appropriate in common usage, but actually makes little sense when these words are employed in a scientific context.
Fact
“Fact” is perhaps the only term in the above list whose common and technical definitions are similar. The major difference is in the degree of certainty expressed, which is simultaneously higher and lower in scientific usage. Following the definition provided by the US National Academy of Science (NAS) (1998), one of the most prestigious scientific societies in the world, a scientific fact is “an observation that has been repeatedly confirmed, and for all practical purposes, is accepted as ‘true’.” Or, as Stephen Jay Gould (1981) put it in his inimitable style, “In science, ‘fact’ can only mean ‘confirmed to such a degree that it would be perverse to withhold provisional assent’.” It is this insistence on repeated confirmation by data—either through direct observation or reliable inference—that makes a claim to “fact” so much stronger in science. However, as the NAS points out, “truth in science is never final, and what is accepted as a fact today may be modified or even discarded tomorrow”. Small-scale details are regularly revised as more precise observations are made, whereas well established facts of fundamental significance are very rarely overthrown, but in principle, no scientific fact of any magnitude is beyond revision or refutation. As a result, scientists must maintain a balance between the confidence that comes from reinforcing conclusions about the world with repeatable data and the understanding that absolute certainty is not something that the methods of science are able or intended to deliver.
Theory
The common and scientific definitions of “theory,” unlike of “fact,” are drastically different. In daily conversation, “theory” often implicitly indicates a lack of supporting data. Indeed, introducing a statement with “My theory is...” is usually akin to saying “I guess that...”, “I would speculate that...”, or “I believe but have not attempted to demonstrate that...”. By contrast, a theory in science, again following the definition given by the NAS, is “a well-substantiated explanation of some aspect of the natural world that can incorporate facts, laws, inferences, and tested hypotheses.” Science not only generates facts but seeks to explain them, and the interlocking and well-supported explanations for those facts are known as theories. Theories allow aspects of the natural world not only to be described, but to be understood. Far from being unsubstantiated speculations, theories are the ultimate goal of science.
much more at link....