Jenkins and Fischbach suggest that the changes in the decay rates are due to interactions with solar neutrinos, nearly weightless particles created by nuclear reactions within the sun's core that travel almost at the speed of light.
It is estimated that about 60 billion solar neutrinos pass through a person's fingernail every second, but they are so weakly reactive that they pass right through the body without disturbing or changing anything, Jenkins said.
"We haven't known the solar neutrino to interact significantly with anything, but it fits with the evidence we've gathered as the likely source of these fluctuations," he said. "So, what we're suggesting is that something that can't interact with anything is changing something that can't be changed."
The Purdue team has ruled out the possibility of experimental error or an environmental influence on the detection systems that track the rate of decay as being responsible for the fluctuations and published a series of papers in the journals Astroparticle Physics, Nuclear Instruments and Methods in Physics Research, and Space Science Reviews.
Sturrock said it is an effect that no one yet understands and that if it is not neutrinos that are responsible, then perhaps there is an unknown particle interacting with the atoms.
"It would have to be something we don't know about - an unknown particle that is also emitted by the sun and has this effect - and that would be even more remarkable," he said.