I said what you think of as its E-field because Aqueous said E-field. I was keeping it simple. Many people don't appreciate that an electron has an electromagnetic field, and they don't always know about the fundamentals of electromagnetism as evidenced by the Aharonov-Bohm effect, and this excerpt from wiki:
"In fact Richard Feynman complained [citation needed] that he had been taught electromagnetism from the perspective of E and B, and he wished later in life he had been taught to think in terms of the A field instead, as this would be more fundamental".
You say this as if you're well versed in
electromagnetism and passing down bits of wisdom to people who might still see electric and magnetic fields as entirely unrelated. You also say it as if you're familiar with the concept and workings of a vector gauge potential. For example, you recently said 'line bundle curvature' in a thread but when Guest pressed you on it you didn't reply.
You're reading too much into it.
You jumped between the electron's wave function and the electromagnetic field around the electron. They are not the same thing. The QM description of the diffraction in the DSE is done by considering the wavefunction. If you turn off the electric charge of the electron and run the QM model again you still get the same DSE behaviours.
Since I mentioned the Aharonov-Bohm effect, note that electron diffraction features in the illustration to this section. The diffraction pattern shifts when the solenoid is turned on, even though there's no electromagnetic field outside the solenoid. And by the way, what we know of as the Aharonov-Bohm effect was predicted by Ehrenberg and Siday in The Refractive Index in Electron Optics and the Principles of Dynamics in 1949. It's a classical paper.
This illustrates what I've been saying about your general behaviour.
There are a great many diffraction experiments, including the AB effect and the DSE. The DSE diffraction is not due to the same thing as the AB effect. The AB effect is explicitly about a field the electron couples to, while the DSE works on particles themselves. Turn off the electron's electric charge and you don't change the general result of the DSE, but you completely change the AB experiment for the electron.
From a field theory point of view there's the electron field and the photon field. The DSE works on the fields themselves. The AB experiment is due to how one field interacts with another.
You point specifically at the picture on the Wiki page and talk about a 'classical paper'. It doesn't have anything to do with the DSE diffraction phenomenon. It's a different type of diffraction. In the AB experiment you can constantly look at the electrons and you still get the AB effect. I can't help but feel the last few sentences in the above quote of yours are attempts to say "Look, I'm well read, I've read
classical papers from decades ago!". Perhaps I wouldn't feel uneasy about such paragraphs in your posts if I knew you were familiar with the basics. Vector potentials, gauge invariances, line bundles. These are things some people don't even cover during their physics degree, some universities push them into masters courses! Certainly bundles, gauge bundles and their curvatures are beyond degree level and that's for people who can do vector calculus in their sleep. You have repeatedly stated you're not a mathematics person so it's a little odd when you start throwing around advanced mathematical concepts which pertain to physics as if you work with them all the time. I know you might read things which mention them all the time but that's a long way from having an understanding, working or otherwise, of them. Hence my offer.
No I haven't. See above. And do note that a photon is associated with an electromagnetic wave, and that a neutron has magnetic moment which is "of particular interest, as magnetic moments are created by the movement of electric charges". A photon has no charge, and a neutron has no net charge, but electromagnetism is still involved. Ditto for sodium atoms and buckyballs.
Yes, you have. As I said, the DSE result is modelled in QM by considering the particle's wave function. Whether or not that particle is charged under any other force is immaterial. Yes, the neutron has small electromagnetic effects, as do plenty of other things formed from the bound states of charged particles. But that doesn't mean their DSE behaviour is due to their electromagnetic properties. As I said, photons don't interact with photons and they diffract. If a particle's behaviour in the DSE was due to its
coupling to the EM field then the EM field itself wouldn't work in the DSE!
Let's nail some colours to the mast here. Do you think QM says an electron does what it does in the DSE because it's electromagnetically charged? Do you think QM explains the DSE for all the particles you list because of their residual EM charges? I'll tell you now, the answer is no. Do you agree with this or not? If not, why not and what evidence do you have? If so why are you bringing up the AB effect, which involves the coupling with the EM field?
If you want to see the explaination in a 'classical work' then look up the DSE in Feynman's lectures.
An electron doesn't have an electric field. An electron has an electromagnetic field.
It's an
electric charge, it only produces a magnetic field when it's moving (in some frame). Do you think I'm unfamiliar with that? I distinctly remember asking you on PhysOrg to prove Maxwell's equations are Lorentz invariant, after you claimed to be a world expert in it, and I had to tell you the answer in the end.
And besides, I did actually say "
You mentioned the E field of the electron. That's the electric part of the electromagnetic field, which is carried by photons". Pay attention.
And whilst a neutron doesn't, a free neutron decays in circa 15 minutes to a proton, electron, and antineutrino.
Again, you throw in irrelevant little factoids which I feel are attempts to look well read. Unfortunately when all your little factoids can be gotten from Wikipedia it just back fires on you.
The net charge is still zero, but now the electromagnetism betrayed by that magnetic moment is laid bare.
The magnetic moment of the neutron has nothing to do with how it decays into a proton et al. Again, you seem to be trying to throw in lots of little things in the hopes it sounds well read. Instead it just seems odd.
Again, I was keeping it simple. The spherical hurricane doesn't quite work because there's no chirality. It has to be quasi-spherical, with a compound rotation.
What's that? I think it's the sound of back peddling!
Please define, precisely,
quasi-spherical. I want formal definitions.
Moving charges produce magnetic fields. For spherical symmetry you cannot have a preferred direction and if the electron is moving in a particularly direction you have that as a preferred direction and thus you can break the symmetry. An electric field can have spherical symmetry as the field lines are radial. A magnetic field from an electric charge is not, which dovetails with the whole electric-magnetic field transforms under changes of frame.
I really think we ought to go back to Minkowski here:
Again, I find statements like this from you very odd. You have an obsession with physicists/mathematicians from the first half of the 20th century and then only their words, not their actual results. You want to talk about Minkowski but you can't do anything formal with his metric. You want to talk about Feynman but you can't do any of his path integrals. You want to talk about the AB effect but you can't do gauge theory. When are you going to realise you aren't going to grasp their work in any meaningful way until you have a
working understanding of it. You rely on people like myself, people who've taken the time to gain such a working understanding, to convert it into terms you understand. You then unfortunately labour under the misconception that you have a good grasp of the specifics.
If you think I've been slap dash with how I've phrased things in my replies to you then perhaps you should look a little closer to home. I'd love to have a quantitative discussion on this with you, I explicitly asked you to formalise your views on the whole hurricane thing but you didn't (couldn't). Look at the excellent thread Cpt made, where the formal details show how amazingly elegant some mathematics can lead to deep physical insight. The problem is that when I ask you to do something formal you can't and if I were to do it you'd not understand.
I'm aware the electron has an electro
magnetic field, I know precisely how they couple together in both Maxwell and Dirac's work (which is more than can be said for you). This discussion would be much easier if we could all just flick into differential forms but you wouldn't be able to keep up. Instead you waste your time and mine by repeating back wordy summarises of mathematical physics you've made no attempt to learn or understand. Do yourself a favour and give it a rest, spend your time a little more wisely.
The current-in-the-wire is a good half-way house to understanding this. You step from a spherical electromagnetic field to a cylindrical scenario with concentric "magnetic field lines" which your test-electron circles round. Bend the wire into a ring and add more rings and you've got a solenoid. Throw your test electron through the middle and it goes around the "magnetic field lines". But you don't actually have a magnetic field per se, merely a combination of electromagnetic fields and relative motion.
This is a perfect example. Rather than waving your arms and giving descriptions open to incorrect interpretation, imprecise description and incorrect intuition we could communicate much more accurately and much faster if you could just do this all mathematically. If you spent more time reading proper papers and textbooks and less time reading pop science you'd know how to describe a set up properly, such as
A solenoid with N turns of length L and radius R has current I passed through it, centre at the origin of 3 dimensional Euclidean space. A test particle of mass m and charge q is placed at $$\mathbf{x}$$ and a uniform external magnetic field $$\mathbf{B}$$ is applied. The equations of motion are therefore.....
Instead you have "Bend it into a ring and it goes around the field lines"
. You can't complain I'm being slack with details and yet refuse
at every single turn to quantify or formalise anything you say.
You're making heavy weather of all this. It is unwarranted.
I'm calling it like I see it. You've been stuck in whatever intellectual rut you're in for the better part of a decade, clearly you need to be prodded out of it.
Electron wavelength is λ = 4πn / c^1½, the n being a dimensionality conversion factor with the value of 1 and the c being a straight number with the value 299,792,458. There's two orthogonal rotations in this "hurricane". Get your calculator out.
You actually think that's coherent? Please elaborate on what on Earth you're on about.
I ignore you because you're full of hubris and outraged anger. It's impossible to have a sincere conversation with you. Pack it in.
'Outraged anger? I did like your misplaced condescension and belief you're saying something valid or have insight. I did like your hypocrisy too. I don't have anger towards your work, I don't think it's worth anything so why should I be angry about it? Cranks always think I'm angry because I perceive their work as a threat to either my own or the mainstream or something like that. Magneto and Sylwester for instance, they think I'm jealous of them, as if they have anything I could possibly be jealous of. I find the general lack of honesty in you lot distasteful but there isn't the level of anger you seem to think there is. You lot simply aren't that high on my radar.
Besides, the simplest way to shut me up is to prove me wrong. Can you provide a working, quantitative model from you work for
anything? String theory can. If your work is supposedly worth 4 Nobel Prizes what does that make string theory then?
If you addressed this contradictory behaviour of yours rather than tried to ignore it and carried on spouting "String theory is dead, it produces nothing!" and the like then perhaps I'd think you deserving of a little more respect. I'm not using a complicated metric here, I'm just pointing out repeated hypocrisy.
Then do it. Don't leave it all to me and act like some thought-police flunky who comes out of the woodwork to trample on discussions. I'm the one helping here.
Giving irrelevant and sometimes nonsensical replies isn't 'helping'. If you can't say something useful then opening your mouth is the opposite of helping.
As I just pointed out, none of your takes on any bit of physics has lead to an experimentally viable working model (or working model of any kind, viable or otherwise). If I were coming into every thread saying "String theory says...." and assuming the matter than closed wouldn't you be complaining? Wouldn't you be pointing out your various talking points about string theory? I imagine so. Hence I think you're showing somewhat of a double standard. If string theory is 'not even wrong' then your take on things is 'not even string theory'.
Pull your finger out and give some help to guys like Aqueous. Find ways to explain things in simple terms, and motivate and interest and enthuse people about physics instead of sneering at them and putting them off. Be civil, be professional.
Just because you're dealt with in a short manner, based on
years of experience engaging with you, doesn't mean everyone gets that treatment. I've provided plenty of help to people in other threads. And I don't always jump on you, just when you start coming off as if you understand advanced material, quoting results or areas of physics as if you've got a working understanding (line bundle curvature for instance) when I (and you) know you don't. Tone it down a bit and you slip under the radar like more rational honest people.
And so do you. Go on, let's do it. But not vector calculus in general. There's an issue wherein a vector field relates to what it does rather than what it is. It has to be vector calculus for electromagnetism. And an alpha thread. Any abuse from you and we are done.
Pretty much everything in vector calculus can be given a physical interpretation so there is no 'vector calculus for electromagnetism'. Besides, stuff like special relativity, electrodynamics, quantum mechanics and gauge theory all use similar stuff (and more besides). You can't draw a dividing line through areas like that, that isn't how mathematics works. This is part of what you need to address, a fundamental misconception in how mathematics and physics relate to one another.
However, if you want things to be tailored a little more to what you're interested in I can pull out sections from various lecture notes I have available to me and each iteration we can do another section of them. I can also find a bunch of problems from books and lecture notes which have a more EM tint to them if that's what you're after. The set up could be I provide a bunch of pages on some part of vector calc along with questions based on the material, a week or so goes by and then you provide your attempts to the answers and we (ie you, me and anyone else interested) discuss it. Bear in mind if you want to play by the alpha thread rules you'd be
required to answer direct questions about your thinking, understanding and any methodology you might employ to answer the questions. I'll be blunt, I wouldn't put it past you to try to find the answers using Google and then try to proclaim you can do this stuff. Of course you'd only be cheating yourself, wasting an opportunity to have people help you learn (and plenty of students have or do pay for the teaching time of people like myself, Prom, Guest, Cpt etc and you'd get it free).
At some point I can rustle up something on the implementation of div, grad and curl in electromagnetism if you want. Or should I not assume a working familiarity with differentiation, integration and vectors?
We can