IMHO, which I am pretty sure I am entitled to, you have you have made a grave error in your so called "moderation". But I am not surprised. I was expecting this to happen as soon as Ophiolite showed up. Super obvious set up. Comical. Conspirare.
"Please provide evidence that the global economy has been starved of energy since 2012 and explain and provide evidence as to how the ETP model explains it."
This thread contains 75 pages of my more than patient explanation of how and why the economy has been starved of energy since 2012 and how the Etp model explains it all.
But here is some more support for my argument that the economy is starving for energy:
Murphy, David J. December 2, 2013. The implications of the declining energy return on investment of oil production. Trans. R. Soc. A 2014 372
Abstract. Declining production from conventional oil resources has initiated a global transition to unconventional oil, such as tar sands. Unconventional oil is generally harder to extract than conventional oil and is expected to have a (much) lower energy return on (energy) investment (EROI). Recently, there has been a surge in publications estimating the EROI of a number of different sources of oil, and others relating EROI to long-term economic growth, profitability and oil prices. The following points seem clear from a review of the literature: (i) the EROI of global oil production is roughly 17 and declining, while that for the USA is 11 and declining; (ii) the EROI of ultra-deep-water oil and oil sands is below 10; (iii) the relation between the EROI and the price of oil is inverse and exponential; (iv)
as EROI declines below 10, a point is reached when the relation between EROI and price becomes highly nonlinear; and (v) the minimum oil price needed to increase the oil supply in the near term is at levels consistent with levels that have induced past economic recessions.
From these points, I conclude that, as the EROI of the average barrel of oil declines, long-term economic growth will become harder to achieve and come at an increasingly higher financial, energetic and environmental cost.
Introduction
Today’s oil industry is going through a fundamental change: conventional oil fields are being rapidly depleted and new production is being derived increasingly from unconventional sources, such as tar or oil sands and shale (or tight) oil. Indeed, much of the so-called ‘peak oil debate’ rests on whether or not these sources can be produced at rates comparable to the conventional mega-oil fields of yesterday.
What is less discussed is that the production of unconventional oil most likely has a (much) lower net energy yield than the production of conventional crude oil. Net energy is commonly defined as the difference between the energy acquired from some source and the energy used to obtain and deliver that energy, measured over a full life cycle.
A related concept is the energy return on investment (EROI), defined as the ratio of the former to the latter (EROI=Eout/Ein). The ‘energy used to obtain energy’ (Ein) may be measured in a number of different ways. For example, it may include both the energy used directly during the operation of the relevant energy system (e.g. the energy used for water injection in oil wells) as well as the energy used indirectly in various stages of its life cycle (e.g. the energy required to manufacture the oil rig). Owing to these differences, it is necessary to ensure that the EROI estimates have been derived using similar boundaries, i.e. using the same level of specificity for Ein. Murphy et al. [1] suggested a framework for categorizing various EROI estimates, and, where applicable, I will follow this framework in this paper.
Estimates of EROI are important because they provide a measure of the relative ‘efficiency’ of different energy sources and of the energy system as a whole [2,3]. Since it is this net energy that is important for long-term economic growth [3–6], measuring and tracking the changes in EROI over time may allow us to assess the future growth potential of the global economy in ways that data on production and/or prices cannot.
Over the past few years, there has been a surge in research estimating the EROI of a number of different sources of oil, including global oil and gas [7], US oil and gas [8,9], Norwegian oil and gas [10], ultra-deep-water oil and gas [11] and oil shale [12]. In addition, there have been several publications relating EROI to long-term economic growth, firm profitability and oil prices [3,13–15]. The main objective of this paper is to use this literature to explain the implications that declining EROI may have for long-term economic growth. Specifically, this paper: (i) provides a brief history of the development of EROI and net energy concepts in the academic literature, (ii) summarizes the most recent estimates of the EROI of oil resources, (iii) assesses the importance of EROI and net energy for economic growth and (iv) discusses the implications of these estimates for the future growth of the global economy.
Energy return on (energy) investment, oil prices, and economic growth
The economic crash of 2008 occurred during the same month that oil prices peaked at an all-time high of 147 dollars per barrel, leading to numerous studies that suggested a causal link between the two [47,48]. In addition, other researchers involved in net energy analysis began examining how EROI relates to both the price of oil and economic growth [3,13,15,49–51].
Murphy & Hall [3] examined the relation between EROI, oil price and economic growth over the past 40 years and found that economic growth occurred during periods that combined low oil prices with an increasing oil supply. They also found that high oil prices led to an increase in energy expenditures as a share of GDP, which has led historically to recessions. Lastly, they found that oil prices and EROI are inversely related (figure 2), which implies that increasing the oil supply by exploiting unconventional and hence lower EROI sources of oil would require high oil prices. This created what Murphy & Hall called the ‘economic growth paradox: increasing the oil supply to support economic growth will require high oil prices that will undermine that economic growth’.
Other researchers have come to similar conclusions to those of Murphy & Hall, most notably economist James Hamilton [47]. Recently, Kopits [50], and later Nelder & Macdonald [49], reiterated the importance of the relation between oil prices and economic growth in what they describe as a ‘narrow ledge’ of oil prices. This is the idea that the range, or ledge, of oil prices that are profitable for oil producers but not so high as to hinder economic growth is narrowing as newer oil resources require high oil prices for development, and as economies begin to contract due largely to the effects of prolonged periods of high oil prices. In other words, it is becoming increasingly difficult for the oil industry to increase supply at low prices, since most of the new oil being brought online has a low EROI. Therefore, if we can only increase oil supply through low EROI resources, then oil prices must apparently rise to meet the cost, thus restraining economic growth.
Skrebowski [51] provides another interpretation of the relation between oil prices and economic growth in what he calls the ‘effective incremental oil supply cost’.2 According to data provided by Skrebowski, developing new unconventional oil production in Canada (i.e. tar sands) requires an oil price between 70 and 90 dollars per barrel. Skrebowski also indicates that new production from ultra-deep-water areas requires prices between 70 and 80 dollars per barrel. In other words, to increase oil production over the next few years from such resources will require oil prices above at least 70 dollars per barrel. These oil prices may seem normal today considering that the market price for reference crude West-Texas Intermediate ranged from 78 to 110 dollars per barrel in 2012 alone, but we should remember that the average oil price during periods of economic growth over the past 40 years was under 40 dollars per barrel, and the average price during economic recessions was under 60 dollars per barrel (dollar values inflation adjusted to 2010) [3]. What these data indicate is that the floor price at which we could increase oil production in the short term would require, at a minimum, prices that are correlated historically with economic recessions.
---Futilitist