GMO foods a good thing or bad?

Literally true, but they don't have a monopoly on seeds, just on that one crop. If you don't like it buy another one. It's somewhat confusing for you to say "these seeds are horrible" and "they're really hard to get!"

It's like saying that McDonald's has a monopoly on Big Macs. Literally true. But if you don't like it, there are plenty of other hamburgers out there.

There are a few crops

But anyway , it seems though that once the farmer switchs to gmo's it is very difficult to switch back to natural seeds
 
... Do you even know when the sunspot cycle was discovered? I'll give you a hint: it wasn't "hundreds of years ago". :rolleyes:
Are you sure? Look here: http://www.spaceweather.com/java/sunspot.html and read

Moments in History:

1613 - Galileo discovers sunspots

1859 - Heinrich Schwabe announces discovery of the sunspot cycle*

1859 - Richard Carrington discovers solar flares

1879 - Albert Einstein's birthday, March 14th

1895 - Marconi invents the radio ...

* But they had been observed for more than 200 years before being formally call a "cycle" in a published paper in 1859. As I recall, a Swiss father and son counted the spots almost every non-cloudy day for at least four, perhaps six decades. - They surely knew the 11 year cycle, long ago.
 
russ said:
It looks to me like you are just inventing a nonsensical testing standard as a way to effectively ban GM food.
They aren't nonsensical - they are kind of minimal, actually, for making one's civilization dependent on GMOs for its food supply.

You want field testing through a couple of large scale weather cycles at least, and health testing through at least one complete human reproduction cycle with that diet. That's not extreme - that's hardly even enough for ordinary prudence. Then there are the ecological and economic aspects - - - - .
russ said:
Also, you've mentioned the potato famine a couple of times now. It is a very poorly chosen example, since it is a natural example of something you think GM food could cause. In other words: a problem not unique to (indeed, not even identified in) GM food.
You miss the points: Not only how sudden and bad the unforeseen problems can be, when adopting unfamiliar crops with hidden genetic flaws, but how long it can take to discover them. Crops are not light bulbs or cell phones - entire economies, even civilizations, are built around them, new models can be several years work and production time, they cannot be quickly patched if they start to screw up, and we can't live without them.

In addition, GM methods could provide built-in solutions to such problems.
Yes. There is great potential in GM techniques for astonishing benefits. Meanwhile we are as yet not receiving such benefits, but are instead being subjected to serious imposed risks for the profit of a couple of agribusiness concerns.

read said:
First off, are you talking about human "generations" or plant generations?
Both, of course. This is a food crop, yes? And not lab generations, either.
read said:
Under lab conditions (greenhouse conditions and even tighter) you could go through MANY plant generations in a relativity short time. - - - . In other words, definitive results - real facts - could be obtained in considerably less time than you seem to be thinking of.
That would not replace field testing. We saw the difference just this past summer, when GMOs specifically tested for drought tolerance proved more fragile than their source varieties in the real life NA drought. You will be paying high prices for pork chops and T-bones for a while, a very mild consequence compared with what Ethiopians, say, would have suffered had that happened to them.

Perhaps they will take warning, and show more prudence in adopting these new and unfamiliar crops.

billvon said:
Literally true, but they don't have a monopoly on seeds, just on that one crop. If you don't like it buy another one
Unless that kind of crop failure, after borrowing so much money and setting yourself up as dependent on foreign fertilizer and seed and financing and so forth, costs you your farm. The confusing rumors of suicides and related problems in India, around these GMO adoptions, should be looked into, IMHO.
 
... We saw the difference just this past summer, when GMOs specifically tested for drought tolerance proved more fragile than their source varieties in the real life NA drought. ...
reference please. I just an hour ago read some financial analysis on Monsanto, learned it has lost its patent on roundup resistant soy but that investors should not worry as its GM corn seed is very drought tolerant - huge yields in droughts when standard corn gives essentially none. All the mid west corn growers are very interested, etc.
 
reference please. I just an hour ago read some financial analysis on Monsanto, learned it has lost its patent on roundup resistant soy but that investors should not worry as its GM corn seed is very drought tolerant - huge yields in droughts when standard corn gives essentially none. All the mid west corn growers are very interested, etc.

Yes, all patents have a time limit, and without them nobody would invest in the research. So they are a very good thing. I've been getting the impression that many posters think the patents provide an unfair advantage, but what they are really doing is giving people who risk their money a fair chance to make a return on their investment.
 
billy said:
reference please. I just an hour ago read some financial analysis on Monsanto, learned it has lost its patent on roundup resistant soy but that investors should not worry as its GM corn seed is very drought tolerant - huge yields in droughts when standard corn gives essentially none.
Sounds like you are talking about the new stuff, due to be rolled out next year probably. Lots of hype on it - might actually work. Monsanto thinks it's great, the Union of Concerned Scientists and other watchdog groups think it has problems. http://www.reuters.com/article/2012/06/05/corn-monsanto-idUSL1E8H4JMW20120605

That comes under the heading of "potential", of which GM tech has plenty - even for actual public benefit.

The US GM corn varieties widely planted in 2012 did not handle the drought well at all. Neither did the GM soybeans, etc. They underperformed the varieties used to engineer them. This should not have been surprising, because the herbicide resistance and insecticide production and so forth exact a price in metabolism - there is no free lunch, and these crops are consistently lower yield per acre compared with comparable varieties even under normal conditions.

There's an aspect often omitted from the discussion: regular breeding has made advances as well, and also has great potential, despite being shortchanged in funding and effort. Comparisons favoring GM crops are often with older standard bred varieties, and the opportunity cost of not putting the research effort into the standard breeding is overlooked almost everywhere.

killjoy said:
I've been getting the impression that many posters think the patents provide an unfair advantage, but what they are really doing is giving people who risk their money a fair chance to make a return on their investment.
In agriculture these advances used to be generated by the research departments at the big land grant universities, paid for by the taxpayer, and the general principle was that they were then provided to farmers, seed growers, etc, free or for nominal sums. They are still mostly generated at those universities, but now they are often generated under various agreements with agribusiness corporations for auxiliary funding, so the basic advances are handed over to agribusinesses for final tweaks and tests and then patented under whatever the agreement for funding specified.

So the farmer pays taxes for the U, pays tuition for his kids to the U, and then pays the corporation for the research done by the U. Also, the research becomes closely guarded corporate advantage rather than publicly shared discovery, with all the delays, inefficiencies, and troubles that implies (fraud and bias and deception are becoming common, opportunity cost is almost impossible to estimate but certainly not zero).
 
we are seeing just the tip of the iceberg here.
the issue isn't money or where it's going but what exactly are we about to uncap.
in my opinion there isn't really all that much money in food production.
food must be made available to all regardless of their ability to pay for it.
it's basically the reason for GMO food in the first place.
the real money lies in industry.
i'm positive industry is begging for solutions GMO research can provide.
 
Sounds like you are talking about the new stuff, due to be rolled out next year probably. Lots of hype on it - might actually work. Monsanto thinks it's great, the Union of Concerned Scientists and other watchdog groups think it has problems. http://www.reuters.com/article/2012/06/05/corn-monsanto-idUSL1E8H4JMW20120605 ...
Thanks for this link. Its last paragraph made the most sense to me:
"It's absurd to assume it's an either/or debate. With growers all over the world dealing with climate change and increased demand due to overpopulation, we need to turn to all the means available - including improved seeds and biotechnology to address these challenges."

Perhaps the FDA´s often used /required "head to head" testing should be used. I.e.- one part of field planted with the GM "drought guard" corn and the other with best breed drought resistant corn, like in test of new drug, where at least "not inferior" performance is required for approval (and safty testing too for the GM corn). The UCS (and others) asserting breeding is just as good and cheaper, may be correct, but if cheaper, the market place will favor it. I don´t know, but think if many years are spent developing a new genetic line by breeding & selection technology, then it should have the same patent protection as a GM new genetic line.
 
The cycle would probably have been noted before Schwabe,
had it not been for 65 years of very low sunspot activity.
This "Maunder Minimum" coincided with a period of cold weather in Europe.

...........there is, therefore, a reasonably good sunspot record for the years 1610-1645.
After this time, however, sunspot activity was drastically reduced. When, in 1671, a prominent sunspot was observed, it was treated as a rare event. Sunspot activity increased again after about 1710. The period of low activity is now referred to as the Maunder Minimum, after Edward Walter Maunder (1851-1928), one of the first modern astronomers to study the long-term cycles of sunspots.

http://galileo.rice.edu/sci/observations/sunspots.html


At present, we are in a period of very high activity.
See http://news.bbc.co.uk/1/hi/3869753.stm

This Scientific American article suggests that there may well be a connection between a low number of sunspots, and cold winters in Europe.
http://www.scientificamerican.com/article.cfm?id=sunspots-and-climate-a-new-frozen-c
 
billy said:
The UCS (and others) asserting breeding is just as good and cheaper, may be correct, but if cheaper, the market place will favor it.
It has to exist, first, in physical and commercially significant reality. Then it has to be marketed - in an actual free market, a difficult thing to maintain in places whose total GDP is not that much bigger than international agribusiness's revenue. Then "the market" has a chance to rule.

Standard breeding (which could be dramatically streamlined via GM techniques) has been largely abandoned, starting years ago with the commercially attractive innovation of "hybrid" seeds that could be patented. The societally prudent and time tested method of publicly supported research publicly available has been neglected in favor of carefully guarded profit opportunities for agribusiness concerns - which do not always align with what a sensible person would call a "benefit".

What's good for GM is not necessarily good for the country, to coin a phrase.

I don´t know, but think if many years are spent developing a new genetic line by breeding & selection technology, then it should have the same patent protection as a GM new genetic line.
Two problems: up front time and costs (standard breeding takes a while, in its older and still unimproved setup), and enforcement: standard bred crops and animals reproduce themselves - the farmer need only buy the seeds once. Normally, that would count as a benefit and advantage - from every pov except one.

"It's absurd to assume it's an either/or debate. With growers all over the world dealing with climate change and increased demand due to overpopulation, we need to turn to all the means available - including improved seeds and biotechnology to address these challenges."
We are in danger of confusing two separate debates, one settled and done (the potential of GM tech is enormous and valuable in the extreme - it might save our ass here), and the other one which is more at issue: the reality of what is being done and risked in the actual, real life employment of GM tech in the world (it might ruin us, promoted at this level of heedlessness and irresponsibility, to such enormous profit for a few - no kidding).
 
Another site on GMO foods

And its not just pesticide resistance to these crops , it is also that , the only place to buy these crop seeds is by one company

Hence a monopoly

http://www.responsibletechnology.org/
Does being a monopoly carry with it any inherent health effects?

As I said before, I have been of the opinion for some time that much anti-GMO hysteria is more about anti-corporate political ideology than health.
 
Are you sure? Look here: http://www.spaceweather.com/java/sunspot.html and read

1859 - Heinrich Schwabe announces discovery of the sunspot cycle*
I would say that "hundreds" starts a 200.
iceaura said:
You want field testing through a couple of large scale weather cycles at least, and health testing through at least one complete human reproduction cycle with that diet. That's not extreme - that's hardly even enough for ordinary prudence.
1. You claimed, incorrectly/absurdly, that that has been standard procedure in the past. It hasn't, so:
2. Because that's vastly more testing than anything has ever had, yeah, that makes it "extreme".
Not only how sudden and bad the unforeseen problems can be, when adopting unfamiliar crops with hidden genetic flaws, but how long it can take to discover them. Crops are not light bulbs or cell phones - entire economies, even civilizations, are built around them, new models can be several years work and production time, they cannot be quickly patched if they start to screw up, and we can't live without them.
That's a mess. The potato crop had been known to be unreliable for 140 years, having failed 24 times in that time (it's in the wiki). I think genetic engineering could find a work-around in that time.

More importantly, that I didn't think of before: Ireland had a famine because it was highly dependent on potatoes. Today, our diets are so diverse, the biggest tragedy would be switching from potato chips to corn chips.
Yes. There is great potential in GM techniques for astonishing benefits. Meanwhile we are as yet not receiving such benefits...
Duh. GM food can't fix a non-existent problem!

But of course, contrary to your claim, other astonishing benefits have been realized.

That reference does not support your drought resistance claim.
1. That crop hasn't been released yet, so it can't be the one you were referring to.
2. It doesn't say it is inferior to existing crops, it says doesn't perform any better.
3. The "research" was done by a biased source and does not appear to be peer reviewed.
 
Here's a National Academy of Sciences study documenting the realized benefits of GM crops. Yes, the benefits actually exist:
Many U.S. farmers who grow genetically engineered (GE) crops are realizing substantial economic and environmental benefits -- such as lower production costs, fewer pest problems, reduced use of pesticides, and better yields -- compared with conventional crops, says a new report from the National Research Council.....

Improvements in water quality could prove to be the largest single benefit of GE crops, the report says. Insecticide use has declined since GE crops were introduced, and farmers who grow GE crops use fewer insecticides and herbicides that linger in soil and waterways...

In many cases, farmers who have adopted the use of GE crops have either lower production costs or higher yields, or sometimes both, due to more cost-effective weed and insect control and fewer losses from insect damage, the report says....

Farmers have not been adversely affected by the proprietary terms involved in patent-protected GE seeds, the report says.
http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12804
 
russ said:
1. You claimed, incorrectly/absurdly, that that has been standard procedure in the past. It hasn't, so:
2. Because that's vastly more testing than anything has ever had, yeah, that makes it "extreme".
It has, actually - the testing was done informally, at great and occasionally disastrous expense to generations of farmers, in actual field plantings, in the course of very slow adoption of new kinds of crops. This was long before science was formalized, mostly, and there were some misses - the Irish, for example, were induced by their colonial government to convert much of their subsistence farming to potato planting, without the traditional generations of trial and evaluation and piecemeal adoption. The result was one of the all time famous disasters, which hit forty years after the introduction of the new and untested (locally) crop. We might include the economically and politically forced replacement of the Haitian pig with the new breeds from elsewhere (result: malnutrition and cityward migration), and perhaps even the Maoist alterations of traditional rice farming methods or the Soviet imposition of unsuitable crops incompetently bred under Lysenkoism.

It's been a while since we were faced with an agricultural innovation this basic and unfamiliar both, so the traditional approach is perhaps not familiar to people. And modern science can of course speed up the process, and should. But skipping it entirely incurs serious risk.

russ said:
More importantly, that I didn't think of before: Ireland had a famine because it was highly dependent on potatoes
We are currently dependent on a couple of genetically close GM varieties for 90% of the US soybean crop, and large percentages of the maize, and much of the cotton etc. So we won't get a famine, just a disastrous crop failure? That might be true of the US (and might not - we are pretty well hooked on a couple of varieties of corn and soybeans for the great majority of our diet). In India and Africa, not so much safety margin.

Are you advocating restricting these untested and genetically uniform GM crops to regions where massive failure or serious side effects (ecological, economic, medical, etc) will not starve people? OK. You will lose a lot of potential benefits, though. I would be more nuanced in the regulation.

russ said:
Here's a National Academy of Sciences study documenting the realized benefits of GM crops.
From 2010, compiling up to 2009. So too early for any confidence, and outdated as well in thsi fast moving field.

It doesn't mention benefits to foods, or diets etc, either - but we have drifted, in this thread.

So: Even taking the report at its word (there are dissenting reports) it doesn't actually document net benefits, or general public benefits, or long term benefits, overall.

Read carefully and with some background information it fails to supply, we see that the benefits are either temporary and deceptive (less insecticide applied is from insecticide manufactured in the plant, which is of course going to create resistance as well as risking health problems), contingent (herbicides that "linger" (they all linger some) have been reduced if the report is accurate, but other herbicides are being applied more heavily - not only is resistance an incoming problem, but the effects of the much heavier applications of the supposedly non-lingering types are not addressed), deceptively derived (compared with "conventional" crops not specified, and available improvements in those "conventional" crops ignored) or carefully qualified ("many cases" begs the obvious question: what percentage, and what about the others).

We could notice that they seem to have missed some stuff, as well:
Farmers have not been adversely affected by the proprietary terms involved in patent-protected GE seeds, the report says.
Well, we know some farmers have been hit with lawsuits over issues of genetic drift, that kind of thing, so at least some farmers have been "adversely affected" in at least that way. How many, and how many ways, we cannot learn from this report.

But the report can speak for itself:
"However, these benefits are not universal for all farmers. And as more GE traits are developed and incorporated into a larger variety of crops, it's increasingly essential that we gain a better understanding of how genetic engineering technology will affect U.S. agriculture and the environment now and in the future. Such gaps in our knowledge are preventing a full assessment of the environmental, economic, and other impacts of GE crops on farm sustainability." - - - -
- - - -
Farmers need to adopt better management practices to ensure that beneficial environmental effects of GE crops continue, the report says.
So too soon to claim solid benefits documented yet, but lots of potential if the farmers change their ways significantly (without being adversely affected, of course) and our luck holds. Sounds about right.

And the report is clear about the necessity - "increasingly essential" - of getting a better handle on this stuff. We don't know what we're doing. What that would entail the report does not say - I posted a probably minimum effort above.
 
Very good link, River.

One point it makes is this:
..........So it's worth looking a bit more closely at a couple of Gurian-Sherman's points. They are, in fact, fundamental. Lynas' pro-GMO arguments hinge on the idea that GMOs are necessary because other ag technologies and methods aren't up to the task. But that's just not true. Gurian-Sherman counters that conventional breeding actually outpaces genetic engineering when it comes to increasing crop yields..........


But GMO may be beneficial is in solving problems that conventional breeding cannot.
No amount of breeding will give rice a nutritious amount of vitamin A
A more balanced diet would be a better solution, but Golden Rice could solve the problem in the interim.
Also, making crops that will grow in colder, drier, warmer, or saltier conditions may extend growing areas.
 
It's good for "us" (the present generation), but I see a lot of negative adverse effects that GMO products can lead to in the long haul. GMO vegetables/fruits, okay by my book. GMO animals, crossing the boundary. But where does one really draw the line. If corporations can be people, I'm pretty sure the topsy-turvy laws in place will make the jump from GMO plants to animals.

Also I think I remember from a documentary I watched that GMO seeds were being patented, and that farmers were being forced to pay/affiliate themselves with certain companies, and they wouldn't be able to avoid it because the seeds could spread from neighboring farms and pollinate on their own fields. So I can see this as another tool for the big man to rule the small
 
Interesting article in The Ecologist:



The GM lobby and its 'seven sins against science'
Peter Melchett

31st December, 2012


The pro-GM lobby has sought to take the 'scientific high-ground' by positioning itself as the voice of reason and progress, while painting its opponents as unsophisticated 'anti-science' luddites. In a scathing response Peter Melchett turns the tables

Powerful forces in Western society have been promoting genetic engineering (now usually genetic modification - GM) in agricultural crops since the mid-1990s. They have included many governments, in particular those of the USA and UK, powerful individual politicians like George Bush and Tony Blair, scientific bodies like the UK's Royal Society, research councils, successive UK Government chief scientists, many individual scientists, and companies selling GM products. They have ignored the views of citizens, and most sales of GM food have relied on secrecy - denying consumers information on what they are buying (20 US States are currently embroiled in fierce battles over GM labelling, strenuously opposed by Monsanto). Worse, they have consistently promoted GM in ways which are not only unscientific, but which have been positively damaging to the integrity of science.

This is, of course, an argument usually aimed at those who, like me, are opposed to GM crops. We are accused of being 'anti-science', emotional and irrational, and more recently, of being as bad as ‘Nazi book burners’ by the President of the National Farmers’ Union. This criticism has been effective in framing the debate about GM crops in the media in the UK, where the conflict over GM is routinely presented as a debate between those who are pro and those who are anti-science. This is reinforced by the fact that those selected to speak in favour of GM are usually themselves scientists (albeit often working for GM companies, or funded to work on GM crops), and those selected to oppose GM crops are usually environmentalists, farmers, or citizens concerned about the safety of the food they eat. Scientists who are critical of GM crops are almost never interviewed by the media.

This characterisation of those opposed to GM as being anti-science has always ignored the fact that the NGOs concerned, like Greenpeace, Friends of the Earth and the Soil Association, are staunch supporters of science, have scientists working for them, and run campaigns to combat problems which were only identifiable through scientific investigation, like the depletion of the ozone layer and climate change. People opposed to GM, including farmers and environmentalists, often have professional or scientific qualifications, and are well versed in the scientific disciplines that affect agriculture. This has not stopped supporters of GM crops dismissing all of these people as irrational, emotional, anti-science zealots.

This characterisation also ignores the fact that the major organisations, and most individuals, who oppose GM crops are not opposed to the use of GM technology in medicine, nor to marker assisted selection (MAS) crop breeding, which relies on scientific knowledge of a plant’s genome. If this was really a case of being 'anti-science', how could we approve of the use of GM technology in medicine or MAS crop breeding?

Indeed, the basic science concerning the complexities of gene organisation and function suggests that natural breeding, often augmented with the non-GM biotechnology tool of MAS, is a far more powerful and productive way forward for crop improvement. Natural breeding and MAS not only preserve gene order and function, but allow the multiple gene systems that confer desirable properties such as higher yield, pest-and blight-resistance, and tolerance to drought, salinity, and flood, to be rapidly and relatively inexpensively bred into crops – something which is still only a distant dream for GM crop technologists.

I should briefly mention a personal interest in the relationship between GM crops and science. I was one of 28 Greenpeace volunteers who in 1999 removed part of a GM maize crop being grown in Norfolk as part of a five year, field scale trial to investigate the relative impact of GM and non GM crops on farmland wildlife. Those of us who tried to remove that crop were accused of vandalism, of trashing the crop, and of being anti-science. In legal terms, we were accused of criminal damage.




In common with, I think, all scientists, I believe that there should be limits on what experiments scientists can do. As well as the general law, there are ethics committees to protect people from unnecessary or potentially damaging research, and the UK has strict (but not strict enough) controls on the use of animals in research. But there are no ethics committees to protect the environment or the interests of non-GM farmers. I believe that farm-based trials of GM crops threaten both, and that is why I and others tried to remove that GM crop. The jury agreed with us, and all of us were found not guilty of criminal damage, so what we did was found to be legally justified, not vandalism.

The fact that the framing of the debate about the use of GM technology in agriculture, between pro- and anti-science, has been successful does not make it correct. In fact, it is those who promote GM crops who have routinely abused science, ignored the basic principles of scientific investigation and proof, and ruthlessly attacked fellow scientists who disagreed with their pro-GM line. In doing so they have misused, abused and devalued science. If people have less respect for science than in the past, I hold the pro-GM lobby partly to blame. They have done real damage to the integrity and independence of science.

Here is the evidence on which I base this accusation.

The first sin

Pro-GM scientists have made the mistake of conflating their opponents' opposition to commercial products (GM crops) with opposition to science. As I will show, those opposed to GM crops have a different, and I would say more accurate, understanding of the underlying science. But GM soya seeds are not 'science' – they are a commercial product.

These products have impacts in the real world. For example, they are used to alter the relationship between farmers and seed producers, preventing farmers saving their own seed. Once a GM variety has been grown, contamination makes it hard for the farmer to revert to non-GM crops, so GM crops tie farmers into long-term relationships with GM seed producers. This allows these companies to exert considerable power over the cost of farmers’ inputs (much as multiple retailers do over the price farmers receive for their outputs). It is now clear that existing GM crops have encouraged herbicide-resistant weeds and insecticide-resistant pests. This has led to ever higher use of more complex mixtures of pesticides to control these pests. As a result, the introduction of most GM crops leads to large increases in pesticide use, rather than the decreases predicted by the GM industry.

The GM traits can be passed by crossing to wild relatives of the crop, and the insecticide in GM Bt crops can destroy beneficial soil fungi. GM crops have negative environmental impacts, as the UK Government's scientific research programme (the Farm Scale Evaluations), which I opposed, showed.

To oppose GM crops for all or any of these reasons is not 'anti-science'. On the contrary, opponents of GM use scientific evidence and cite the practical consequences of growing GM crops as arguments against the use of this particular agricultural technology.

The second sin

Proponents of GM made the mistake of assuming that the scientific breakthrough of unravelling DNA structure and function, and the discovery of DNA-manipulating enzymes (which led to the development of genetic engineering technology being applied to crops), was based on a full understanding of how genes work. As the history of science shows, many great scientific breakthroughs initially appear to have solved some long-standing problem. But on further investigation, it is frequently the case that the new breakthrough raises a host of new questions and areas for investigation. Those of us who love science find this one of the fascinating things about it.

But the companies that were developing GM crops based their ideas on an over-simplistic model of the control of gene expression, and convinced themselves that they were dealing with a straightforward process – hence their initial decision to call the technology of altering crops 'genetic engineering'. They believed that each gene had a single, unique, independent function, and that moving a gene from one plant or animal to another would allow that gene to express that particular function wherever and however it was located.

Even back in the mid-1990s, some scientists said that pro-GM geneticists were oversimplifying gene expression. They pointed out that the geneticists were ignoring relationships that genes have with other genes and relationships that groups of genes have with other groups elsewhere in an organism’s DNA. They pointed out too that the geneticists were ignoring the other factors that effect the regulation of gene expression.

We now know that these scientists were right, and that gene expression is more complex than was initially supposed. Gene organisation within the genome is not random. Genes tend to be grouped into coordinated functional units, and control of expression is far more complex than was initially supposed. The emerging science of epigenetics has demonstrated that, for example, mice with identical DNA can turn out to have extreme variations, between disease-prone, obese animals and fit, slim animals, simply because of the impact that dietary inputs and environmental chemical exposures have on their DNA control mechanisms during pregnancy. Much of the scientific case for GM crop technology is based on a grossly over-simplified view – that genes work as isolated units of information – which we now know to be wrong.

One consequence of the disruptive effect of the GM transformation process is that it can negatively affect crop performance (for example ‘yield drag’ seen with GM soya). Another consequence is the production of novel toxins and allergens, as well as disrupted nutritive value.

The third sin

Instead of embracing new scientific discoveries in this area, the many scientists involved in promoting GM technology have found a number of ways of trying to disguise or ignore the fact that the processes they are promoting are much more complex than they claim.

For example, transferring genes (usually at random) from one plant to another is a far more uncertain, unstable and disruptive process than was originally thought. In order to avoid the costly and time-consuming safety testing of foods produced through this new technology, the Organisation for Economic Cooperation and Development (OECD) – a body devoted not to public health but to facilitating international trade – came up with the concept of 'substantial equivalence'. This assumes that if relatively simplistic chemical analyses of, say, a GM sweetcorn's protein, carbohydrates, vitamins and minerals, find values that can also be found within the range of non-GM sweetcorn varieties, then the GM sweetcorn is deemed to be indistinguishable from, and therefore as safe as, non-GM sweetcorn.

Substantial equivalence was used to deny the need for any biological or toxicological safety testing of GM foods, because GM food was now assumed to be the same as the equivalent food that people had been eating for hundreds of years. This was a political and commercial decision, taken in consultation with, and on behalf of, a small number of large GM companies. It had nothing to do with science. We now know it was opposed by some scientists in the US Federal Drug Administration (FDA), but it was pushed through by political appointees to the FDA. The same approach has spread to many other countries, although some are now less enthusiastic, and the European Union avoids using the term “substantial equivalence”, redefining it as the “comparative assessment” process. However, proponents of the European concept of “comparative assessment” admit that it has much the same meaning as “substantial equivalence”.

An increasing number of detailed biological tests comparing GM and equivalent non-GM crops have now been carried out, not just looking at gross values but rather the spectrum of different types of proteins and other biochemical components. These studies, though few in number, clearly show major differences between the GM and non-GM plants, demonstrating that they are not substantially equivalent. This science invalidates the use of substantial equivalence to assess the safety of GM crops and food, but it is still used in the USA and forms the basis of safety assessments of GM crops in Europe.

There is still no requirement, in any country in the world, for GM food to be tested in long-term or lifetime animal feeding trials. Nor is there any requirement to test GM food by feeding it to several generations of mice or rats, to see whether it has any identifiable impact. So there is no regulatory requirement for GM food to be tested to see whether it is safe for humans to eat.

In response, it is claimed that much non-GM plant breeding involves chemical or radiological mutagenesis, and thus gives rise to the same risks as GM crop breeding, so it would be wrong to apply extra controls on GM crops and food. It is true that chemical and radiation-induced mutation crop breeding is highly mutagenic. But there is a good reason why it is not widely used – it produces a large proportion of unhealthy and deformed plants. In fact, some scientists have called for plants produced by mutation breeding to be tested in the same way as GM crops.

In addition, there is the possibility that there are features of the GM process itself that may affect the genome that are not possible in non-GM crop breeding. And GM allows a gene to be inserted in radically different foodstuffs. For example, in the case of allergic reactions, affected individuals could no longer simply avoid foods they know they are allergic to, as GM crop breeding could allow a toxic, allergenic or sensitising protein to be inserted in any food, with no warning labels.

The fourth sin

While one result of the adoption of the US interpretation of the unscientific concept of 'substantial equivalence' was to discourage scientific studies of the impact of eating GM foods, in practice, the GM companies try to make sure that studies cannot be conducted at all by independent scientists. As an editorial in Scientific American in August 2009 said:

“It is impossible to verify that genetically modified crops perform as advertised. That is because agritech companies have given themselves veto power over the work of independent researchers…. Research on genetically modified seeds is still published, of course. But only studies that the seed companies have approved ever see the light of a peer-reviewed journal. In a number of cases, experiments that had the implicit go-ahead from the seed company were later blocked from publication because the results were not flattering.... It would be chilling enough if any other type of company were able to prevent independent researchers from testing its wares and reporting what they find.… But when scientists are prevented from examining the raw ingredients in our nation's food supply or from testing the plant material that covers a large portion of the country's agricultural land, the restrictions on free inquiry become dangerous.”

One of the consequences of this determination to stop science working when it comes to research on GM crops, is that numerous pro-GM scientists have fallen into the unscientific trap of claiming that, because GM food has now been eaten by millions of people for several years, it is clearly 'safe'. As most GM food has been eaten in the USA, and in the period since GM food has been produced, the US has suffered a catastrophic increase in diet-related ill health, these same scientists might as well claim that GM food is extraordinarily damaging to human health. Because there has been no GM food labelling in the US, no post-market monitoring, and no epidemiological research, we simply don't know. But to claim that the absence of evidence of harm from GM food means that there is evidence that GM food is safe, when none of the necessary research has been done, shows a wilful disregard for basic scientific principles.

The fifth sin

Although proper studies are difficult to carry out because of the problems of obtaining samples of GM material, some studies have been done looking at the impact of GM diets on animals. Worryingly, these studies, conducted by independent scientists, show negative health effects.

The first and best known of these studies was carried out in Scotland by Dr Arpad Pusztai. His study, and others that have been conducted since, suggest that some adverse impact was being caused to multiple organ systems in the test animals. None of these studies can claim to be conclusive, and most have not been well funded, but they show evidence of potential harm that the scientists involved say needs to be further investigated. All the scientists have been viciously attacked by pro-GM scientists.

Re-evaluations by independent scientists of data obtained from the GM crop industry’s own animal feeding studies also demonstrate clear signs of toxicity. The organs consistently affected are the liver and kidney, the two major detoxification organs, with ill effects on the heart, adrenal glands, spleen, and blood cells also being observed.

What is needed are long-term and lifetime animal feeding studies to see the effects of eating GM foods over an extended period – reflecting the real-life exposure of humans. In addition, multigenerational studies are needed to see the effects on reproduction and future generations. Such studies are compulsory for pesticides and pharmaceutical drugs, but not for GM foods – even though the exposure is likely to be longer-term for a food than for a pesticide or drug.

One of the great things about science is that, in theory at least, it should not be subject to the whims of those in power or those with money. Anyone making a claim on the basis of scientific evidence should publish their evidence in a form that will allow any other scientist to repeat their experiment, and show whether they are right or wrong. Some of the richest and most powerful organisations in the world attacked Dr Pusztai and his work, particularly the UK’s Royal Society. However, to their shame, not one of these critics has seen fit to do what any student learning about scientific method would be told should be the first step, namely, to repeat the experiment. An experiment can be repeated with any modifications that would, in the eyes of the critic, make the study acceptable.

Work done by a young Russian scientist, and by Austrian scientists, has been attacked in exactly the same way, and no effort has been made to repeat those experiments in order to justify these attacks. These personal attacks have sometimes been coupled with threats that the scientists might lose their jobs or funding (as indeed Dr Pusztai did). But not once anywhere in the world has a pro-GM scientific body or GM company responded to a scientific study they do not like, by doing what anyone who cared about science should do – repeating the experiment.

The sixth sin

One response to these criticisms from the pro-GM scientists is to claim that there is in fact a rigorous, scientific, regulatory regime, for example in the USA and EU, which proves that GM crops are safe. The regulatory regime for GM crops is not based on science, but rather on selected information from GM companies. And because of the perceived need for commercial confidentiality, not all the research the companies give to the regulators is published.

The gold standard of science is peer reviewed, published research. Open publication is fundamental to the integrity of science, and a prerequisite to another key principle on which science rests, namely the fact that conclusions can always be tested by repeating the research. In the area of GM crops, as in some others, what is claimed to be 'scientific' regulation is based on a perversion of science – secretive and (because there is no requirement to publish or even list all studies) possibly highly selective, corporate information.

Independent researchers and NGOs like Greenpeace have used court orders (under EU Freedom of Information laws) to obtain access to previously secret corporate studies. Re-evaluation of the industry raw data shows that the scientists involved selectively studied only a few questions, and interpreted what little evidence they had in ways that favoured corporate interests. Major flaws in the experimental design were evident, which served to mask rather than reveal the effects of the GM transformation process. Nevertheless, these short, 90-day rat feeding studies did show clear signs of toxicity arising from the GM compared to non-GM equivalent feed. If such signs of toxicity are evident after just 90 days, then clearly, lifelong (2-year) studies are urgently needed.

The seventh sin

Almost all the claims made for GM crops by proponents of the technology are claims about benefits that GM technology will deliver in future. This is not a new phenomenon – such claims were being made in the late 1990s, when GM crops were first introduced. Claims that GM crops will solve world hunger, or will deliver drought resistant, nitrogen-fixing or nutrient rich crops, are not science but prophecy.
The pro-GM lobby and the media treat these claims as if they are science, but none of them are based on scientific evidence. They are opinions, not science, often expressed by companies or scientists with a strong financial interest in seeing them treated as fact.

To summarise: first, the pro-GM lobby has deliberately conflated opposition to particular commercial products, GM crops, with opposition to science.

Second, the pro-GM lobby has failed to acknowledge our growing understanding of the complexity of gene expression. They have ignored new developments in science which have added complexity and uncertainty to what they initially assumed was a simple process.

Third, the pro-GM lobby invented and interpreted the pseudo-scientific and anti-scientific concept of substantial equivalence, and then defended it as if it had some scientific merit, which it does not.

Fourth, the pro-GM lobby has deliberately prevented independent research into the safety of GM food, by denying the scientists the samples they require to do such work, and has then claimed that there is evidence that GM foods are safe to eat, confusing the absence of evidence of harm with evidence of safety.

Fifth, the relatively small but growing number of scientific studies that have looked at the long term health consequences of eating GM food have raised serious grounds for concern. But instead of following scientific principles and repeating disputed experiments, the pro-GM lobby has only attacked the research and the integrity of the scientists involved.

Sixth, the pro-GM lobby has claimed that the regulatory regimes for GM crops in America and the EU provide scientific proof that GM crops are safe, while in fact these regulatory regimes rely on limited company information, not science. When problems show up even in these limited industry studies, they have been ignored.

Seventh, the pro-GM lobby presents endless claims of future benefits and performance of GM crops as if these are science rather than prophecies.

When the history of the changes in the public understanding of science and public confidence in science over the last fifteen years comes to be written, I believe that the pro-GM lobby's misuse and abuse of science will be seen to have had a chilling impact. These people, organisations and companies have been responsible for part at least of the sad decline in both public understanding and confidence in science and scientific evidence.

Peter Melchett is Policy Director at the Soil Association.
Thanks to: Claire Robinson, GMWatch; Professor Andy Stirling, University of Sussex; Professor Erik Millstone, University of Sussex; and Dr Michael Antoniou, King’s College London School of Medicine, for their comments on the draft of this paper
.

http://www.theecologist.org/News/news_analysis/271944/wwf_and_monsanto_is_gm_soy_now_okay.html
 
Back
Top