Grote Reber is far less well known than he deserves to be. Born in Chicago in 1911, Reber graduated from the Illinois Institute of Technology in 1932 and took an engineering job with a Chicago radio manufacturer. He became, among other accomplishments, an immensely proficient ham radio operator, succeeding in making contact with other hams in no fewer than 60 countries.
But his greatest achievement came in astronomy. Following up on an experiment conducted at Bell Labs in 1932, Reber built the world's first true radio telescope in his backyard in Wheaton, Illinois. Putting his knowledge of radio waves to work in constructing his telescope, he used a parabolic antenna—a "dish"—with a sheet-metal surface to reflect radio waves to a receiver located 20 feet above it. He designed the receiver so as to enhance the signals by a factor of several million, and he used an electronic stylus to record the radio waves on paper charts. His radio telescope became operational in 1937, and he published a number of papers in technical journals concerning his techniques and results.
Reber's telescope remained the only one of its kind until after World War II, when new technologies led to the building of much larger dish antennas. His pioneering work was a key to the development of vast modern radio telescopes such as those found in the Very Large Array in New Mexico (popularized in the movie
Contact). Reber has received many awards, including the coveted Bruce Medal in 1962, and his original telescope is now on display at the National Radio Astronomy Observatory in Green Bank, West Virginia.
Arthur C. Clarke is one of the most celebrated science-fiction writers in the world. But he himself says that by far the most important piece he ever wrote was a short technical article published in an obscure journal in October 1945. Clarke was then serving as an officer in the British Royal Air Force radar division.
Born in 1917 and raised on a farm near Taunton in southwestern England, Clarke had gained only a high school diploma (he would attend college after the war), but in the RAF he had the opportunity to work with scientists who were doing cutting-edge work that ultimately would prove crucial to the Allied victory in World War II. Clarke had published some short science-fiction stories, but his article "Extra-Terrestrial Relays" was a different matter.
In the article he proposed that communications satellites orbiting the Earth would be the best way to transmit television around the world. Although television would not become a commercial success in the United States until the 1950s, the British Broadcasting Corporation had begun operations in 1936. The few scientists who read Clarke's article largely dismissed his idea as science fiction. But his technical discussions of how such satellites would work were solid, and he correctly calculated the orbit in which they should be placed to gain maximum coverage of the globe.
This geostationary orbit, lying directly above the equator, would come to be called a Clarke orbit in honor of the young visionary who first proposed it. And while Clarke has won numerous awards for his science-fiction novels and stories, his greatest honors—from a special Emmy award in 1981 to NASA's Distinguished Public Service Medal in 1995—have paid tribute to the revolutionary idea he conceived in 1945.
Felix d'Herelle was a self-taught French-Canadian bacteriologist who had difficulty working with establishment scientists. Yet he made one of the most significant breakthroughs in 20th-century biology, discovering and naming bacteriophages, the viruses that attack bacteria.
Testing diseased locusts on the Yucatan Peninsula in 1909 while in the employ of the Mexican government, d'Herelle noticed that cultures of the locust bacteria showed an anomaly that took the form of circular clear spots. In 1916, while he was working at the Pasteur Institute in Paris trying to find ways to control the dysentery that was then felling soldiers on the front, the anomalous clear spots turned up again. This time he conducted further research, leading to the discovery of bacteriophages (literally "eaters of bacteria").
D'Herelle published his first paper on the subject in 1917. An English biochemist named Frederick Twort had made the same discovery, and the two men are given dual credit, but d'Herelle described them in greater depth and named them. He believed that phages, as they came to be generally called, could be used to eradicate some of the most ancient of human diseases, and he spent the rest of his life working toward that end. (Today, as bacteria are becoming increasingly immune to antibiotics, modern scientists have begun undertaking new research of this kind.)
Phages proved to have ideal properties for genetic research, leading directly to the unraveling of the mysteries of DNA. D'Herelle died in 1949, four years before James Watson and Francis Crick worked out the structure of DNA, but he knew that was coming and that his own discovery of phages had made it possible.
Susan Hendrickson is a self-taught expert in a number of fields who has the unusual distinction of having a fossil dinosaur named after her—in fact, the largest and most complete fossil skeleton of a
Tyrannosaurus rex ever found.
Hendrickson has often been compared to Indiana Jones, the fictional hero of the Spielberg movies. She was indeed born and raised in Indiana and has had fascinating adventures all over the world. She was the kind of kid who was reading Dostoyevsky at age 11 yet dropped out of high school. She didn't need diplomas—many people later in her life have simply assumed she has a Ph.D.
An accomplished scuba diver, Hendrickson early on supplied aquariums with rare marine specimens, some of which had never been described. She always knew when she had found something unusual, because she had taught herself well. Later she dealt in amber insect fossils. The good ones she sold to collectors for as much as she could get; the great ones she sold to museums at cost, earning a reputation as someone who cared more about knowledge than money or fame.
But fame came her way. Working with Peter Larson, founder of an organization of private fossil-hunters known as the Black Hills Institute, she set off on her own on August 12, 1990, to investigate a cliff that had been "beckoning" to her for two weeks in the rocky terrain of north-central South Dakota. As was her wont, she had learned the new discipline of dinosaur hunting with great thoroughness, and that training paid off.
Today, the enormous skeleton of "Tyrannosaurus Sue" that she discovered is the principal attraction at Chicago's Field Museum of Natural History. And Sue Hendrickson, who never went to college, finds herself collecting honorary degrees from major universities.
-----------------
Like I said Russ, your science box is too tight and constraining. I don't see how you can even breathe in there. If everyone had your stuffy, boring, uptight, authoritarian, right wing perspective, science would cease to make any new discoveries. Robbed of it's creative vitality, it would only exist as a perverse propaganda tool, like it is used on this forum.
---Futilitist