Try using Google. It works wonders.
Where are your peer reviewed papers? Where are Trippy's?
If 50 million fundamentalists peer review a paper that says there is no continental drift, does that mean there is no continental drift?
If the cardinal peers say the heavens are unchanging, does that discredit Galileo?
right...so the evidence i've been spoonfeeding you isn't enough?
You want references?
Fine. Here's peer reviewed literature that deals with mantle convection:
M. Gurnis, Nature, 332, 695 (1988).
M. Gurnis, S. Zhong, Geophys. Res. Lett., 18, 581 (1991).
M. Gurnis, S. Zhong, J. Toth, The history and dynamics of global plate motions, AGU, Geophysical Monograph 121, pp. 73, (2000)
J. P. Lowman, G. T. Jarvis, Geophys. Res. Lett., 20, 2087 (1993).
J. P. Lowman, G. T. Jarvis, J. Geophys. Res., 104, 12,733 (1999).
S. Zhong, M. Gurnis, Geophys. Res. Lett., 22, 981 (1995)
Anderson, D. L., Top-down tectonics, Science, 293, 2016 (2001).
Anderson, D. L., A statistical test of the two reservoir model for helium, Earth Planet. Sci. Lett., 193, 77 (2001).
Anderson, D. L., 2001, How many Plates?, Geology, 30, 411 (2002).
Anderson, D. L. Plate Tectonics as a Far- From- Equilibrium Self-Organized System, in Plate Boundary Zones, ed. S. Stein, AGU Monograph, (2002).
Cizkova, H., Cadek, O., van den Berg, A.P. and N.J. Vlaar, Can lower mantle slab-like seismic anomalies be explained by thermal coupling between the upper and lower mantles? Geophys. Res. Lett., 26, 1501-1504, 1999.
Here's some more general references that relate to mantle convection:
Agee, C. B. and Walker, D., Mass balance and phase density constraints on early differentiation of chondritic mantle, Earth Planet. Sci. Lett., 90, 144 (1988).
Anderson, D. L., Theory of the Earth, Blackwell Scientific Publications, Boston, pp. 366 (1989). [Chapter 8 is relevant to irreversible stratification of mantle and low U in the lower mantle.]
Anderson, D. L., Where on Earth is the Crust?, Physics Today, March 1989, 38-46. (1989).
Clark, S. P., and Turekian, K. K., Thermal constraints on the distribution of long-lived radioactive elements in the Earth: Phil. Trans. R. Soc. Lond., 291, 269-275 (1979).
Coltice, N., and Ricard, Y., Geochemical observations and one layer mantle convection: Earth Planet. Sci. Lett., 174, 125-137 (1999).
Conrad, C. P., and Hager, B. H., Mantle convection with strong subduction zones: Geophys. J. Int., 144, 271-288 (2001).
Cordery, M. J., Davies, G. F., and Campbell, I. H., Genesis of flood basalts from eclogite-bearing mantle plumes: J. Geophys. Res., 102, 20,179-20,197 (1997).
Cserepes, L., Yuen, D. A., and Schroeder, B. A., Effect of the mid-mantle viscosity and phase-transition structure of 3D mantle convection: Phys. Earth. Planet. Int., 118, 135-148 (2000)
Davaille A., Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle: Nature, 402, 756-760 (1999).
Davies, G. F., Dynamic Earth: Plates, Plumes and Mantle Convection: Cambridge University Press, Cambridge, 458 pp. (2000).
Gu, Y., A.M. Dziewonski, S. Weijia, and G. Ekstrom, Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities, J. geophys. Res., 106, 11,169-11,199 (2001).
King, S. D., and Anderson, D. L., An alternative mechanism of flood basalt formation: Earth Planet. Sci. Lett., 136, 269-279 (1995).
Ritsema, J., H.J. van Heijst, and J.H. Woodhouse, Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925-1928 (1999).
Schubert, G., Turcotte, D., Olson, P., Mantle convection in the Earth and planets: C. U. Press, 956 pp. (2001).
Scrivner, C. and Anderson, D. L., The effect of post Pangea subduction on global mantle tomography and convection: Geophys. Res. Lett., 19, 1053-1056 (1992).
Tackley, P. J., Mantle convection and plate tectonics: Toward an integrated physical and chemical theory: Science, 288, 2002-2007 (2000).
Tackley, P., Three dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: in: M. Gurnis, M. et al., eds., The Core-Mantle Boundary Region, Washington, AGU, 334 pp. (1998).
Turcotte, D.L. and G. Schubert, in Geodynamics, John Wiley & Sons, New York, 450 pp. (1982).
Wen, L. and Anderson, D. L., Layered mantle convection: A model for geoid and topography: Earth Planet. Sci. Lett., 146, 367-377 (1997).
Wen, L. and Anderson, D. L., Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle: Phys. Earth Planet. Int., 99, 131-143 (1997).
http://jspc-www.colorado.edu/~szhong/mantle.html
Here's a list of references that deal specifically with details that relate to why the earths moment of inertia hasn't changed substantially in the last 620 Ma (or more)
Allen, J. R. L., Mud drapes in sand-wave deposits: A physical
model with application to the Folkestone Beds (Early Cretaceous,
southeast England), Philos. Trans. R. Soc. London,
Ser. A, 306, 291–345, 1982.
Allen, J. R. L., Salt-marsh growth and stratification: A numerical
model with special reference to the Severn Estuary,
southwest Britain, Mar. Geol., 95, 77–96, 1990.
Barley, M. E., A. L. Pickard, and P. J. Sylvester, Emplacement
of a large igneous province as a possible cause of banded
iron formation 2.45 billion years ago, Nature, 385, 55–58,
1997.
Berry, A., A Short History of Astronomy, From Earliest Times
Through the Nineteenth Century, John Murray, London,
1898. (Also published by Dover, Mineola, N. Y., 1961).
Berry, W. B., and R. M. Barker, Fossil bivalve shells indicate
longer month and year in Cretaceous than present, Nature,
217, 938–939, 1968.
Boersma, J. R., and J. H. J. Terwindt, Neap-spring tide sequences
of intertidal shoal deposits in a mesotidal estuary,
Sedimentology, 28, 151–170, 1981.
Boothroyd, J. C., Tidal inlets and tidal deltas, in Coastal
Sedimentary Environments, edited by R. A. Davis, pp. 445–
532, Springer-Verlag, New York, 1985.
Brosche, P., Tidal friction in the Earth-Moon system, Philos.
Trans. R. Soc. London, Ser. A, 313, 71–75, 1984.
Brosche, P., and J. Wu¨nsch, The solar torque: A leak for the
angular momentum of the Earth-Moon system, in Earth’s
Rotation from Eons to Days, edited by P. Brosche and J.
Su¨ndermann, pp. 141–145, Springer-Verlag, New York,
1990.
Carey, S. W., A tectonic approach to continental drift, in
Continental Drift: A Symposium, edited by S. W. Carey, pp.
177–355, Univ. of Tasmania, Hobart, Australia, 1958.
Carey, S. W., The Expanding Earth, 488 pp., Elsevier Sci., New
York, 1976.
Chan, M. A., E. P. Kvale, A. W. Archer, and C. P. Sonett,
Oldest direct evidence of lunar-solar tidal forcing in sedimentary
rhythmites, Proterozoic Big Cottonwood Formation,
central Utah, Geology, 22, 791–794, 1994.
Chandler, J. F., R. D. Reasenberg, and I. I. Shapiro, New
bound on G˙ , Bull. Am. Astron. Soc., 25, 1233, 1993.
Cisne, J. L., A basin model for massive banded iron-formations
and its geophysical applications, J. Geol., 92, 471–488, 1984.
Creer, K. M., An expanding Earth?, Nature, 205, 539–544,
1965.
Crisp, D. J., Tidally deposited bands in shells of barnacles and
molluscs, in Origin, Evolution, and Modern Aspects of Biomineralization
in Plants and Animals, edited by R. E. Crick,
pp. 103–124, Plenum, New York, 1989.
Crossley, D. J., and R. K. Stevens, Expansion of the Earth due
to a secular decrease in G: Evidence from Mercury, Can. J.
Earth Sci., 13, 1723–1725, 1976.
Dalrymple, R. W., Y. Makino, and B. A. Zaitlin, Temporal and
spatial patterns of rhythmite deposition on mud flats in the
macrotidal Cobequid Bay-Salmon River estuary, Bay of
Fundy, Canada, Mem. Can. Soc. Pet. Geol., 16, 137–160,
1991.
de Boer, P. L., A. P. Oost, and M. J. Visser, The diurnal
38, 1 / REVIEWS OF GEOPHYSICS Williams: EARTH’S PRECAMBRIAN ROTATION c 57
inequality of the tide as a parameter for recognizing tidal
influences, J. Sediment. Petrol., 59, 912–921, 1989.
Delaunay, M., Sur l’existence d’une cause nouvelle ayant une
influence sensible sur la valeur de l’equation se´culaire de la
Lune, C. R. Hebd. Seances Acad. Sci., 61, 1023–1032, 1865.
Deubner, F.-L., Discussion on Late Precambrian tidal rhythmites
in South Australia and the history of the Earth’s
rotation, J. Geol. Soc. London, 147, 1083–1084, 1990.
Deynoux, M., P. Duringer, R. Khatib, and M. Villeneuve,
Laterally and vertically accreted tidal deposits in the Upper
Proterozoic Madina-Kouta Basin, southeastern Senegal,
West Africa, Sediment. Geol., 84, 179–188, 1993.
Dickey, J. O., et al., Lunar laser ranging: A continuing legacy
of the Apollo program, Science, 265, 482–490, 1994.
Egyed, L., The slow expansion hypothesis, in The Application of
Modern Physics to the Earth and Planetary Interiors, edited
by S. K. Runcorn, pp. 65–75, Wiley-Interscience, New York,
1969.
Eriksson, K. A., Tidal deposits from the Archaean Moodies
Group, Barberton Mountain Land, South Africa, Sediment.
Geol., 18, 257–281, 1977.
Ewers, W. E., and R. C. Morris, Studies of the Dales Gorge
Member of the Brockman Iron Formation, Western Australia,
Econ. Geol., 76, 1929–1953, 1981.
FitzGerald, D. M., and D. Nummedal, Response characteristics
of an ebb-dominated tidal inlet channel, J. Sediment.
Petrol., 53, 833–845, 1983.
Fujioka, K., K. Kobayashi, K. Kato, M. Aoki, K. Mitsuzawa,
M. Kinoshita, and A. Nishizawa, Tide-related variability of
TAG hydrothermal activity observed by deep-sea monitoring
system and OBSH, Earth Planet. Sci. Lett., 153, 239–250,
1997.
Goldreich, P., History of the lunar orbit, Rev. Geophys., 4,
411–439, 1966.
Hambrey, M. J., and W. B. Harland (Eds.), Earth’s Pre-Pleistocene
Glacial Record, 1004 pp., Cambridge Univ. Press,
New York, 1981.
Hansen, K. S., Secular effects of oceanic tidal dissipation on
the Moon’s orbit and the Earth’s rotation, Rev. Geophys.,
20, 457–480, 1982.
Hastie, W. (Ed.), Kant’s Cosmogony, As in his Essay on the
Retardation of the Rotation of the Earth and his Natural
History and Theory of the Heavens, translated from German
by W. Hastie, 205 pp., Maclehose, Glasgow, Scotland, 1900.
(Also published by Thoemmes Press, Bristol, England,
1993.)
Hellings, R. W., P. J. Adams, J. D. Anderson, M. S. Keesey,
E. L. Lau, E. M. Standish, V. M. Canuto, and I. Goldman,
Experimental test of the variability of G using Viking
Lander ranging data, Phys. Rev. Lett., 51, 1609–1612, 1983.
Hofmann, H. J., Stromatolites: Characteristics and utility,
Earth Sci. Rev., 9, 339–373, 1973.
Imperato, D. P., W. J. Sexton, and M. O. Hayes, Stratigraphy
and sediment characteristics of a mesotidal ebb-tidal delta,
North Edisto Inlet, South Carolina, J. Sediment. Petrol., 58,
950–958, 1988.
Isley, A. E., Hydrothermal plumes and the delivery of iron to
banded iron formation, J. Geol., 103, 169–185, 1995.
Kaye, C. A., and G. W. Stuckey, Nodal tidal cycle of 18.6 yr,
Geology, 1, 141–144, 1973.
Kinoshita, M., R. P. Von Herzen, O. Matsubayashi, and
K. Fujioka, Tidally-driven effluent detected by long-term
temperature monitoring at the TAG hydrothermal mound,
Mid-Atlantic Ridge, Phys. Earth Planet. Inter., 108, 143–154,
1998.
Komar, P. D., and D. B. Enfield, Short-term sea-level changes
and coastal erosion, in Sea-Level Fluctuation and Coastal
Evolution, edited by D. Nummedal, O. H. Pilkey, and J. D.
Howard, Spec. Publ. SEPM Soc. Sediment. Geol., 41, 17–27,
1987.
Kuecher, G. J., B. G. Woodland, and F. M. Broadhurst, Evidence
of deposition from individual tides and of tidal cycles
from the Francis Creek Shale (host rocks to the Mazon
Creek Biota), Westphalian D (Pennsylvanian), northeastern
Illinois, Sediment. Geol., 68, 211–221, 1990.
Kvale, E. P., J. Cutright, D. Bilodeau, A. Archer, H. R. Johnson,
and B. Pickett, Analysis of modern tides and implications
for ancient tidalites, Cont. Shelf Res., 15, 1921–1943,
1995.
Lambeck, K., The Earth’s Variable Rotation: Geophysical
Causes and Consequences, 449 pp., Cambridge Univ. Press,
New York, 1980.
MacDonald, G. J. F., Tidal friction, Rev. Geophys., 2, 467–541,
1964.
Martino, R. L., and D. D. Sanderson, Fourier and autocorrelation
analysis of estuarine tidal rhythmites, lower Breathitt
Formation (Pennsylvanian), eastern Kentucky, USA, J. Sediment.
Petrol., 63, 105–119, 1993.
Mazzullo, S. J., Length of the year during the Silurian and
Devonian Periods, Geol. Soc. Am. Bull., 82, 1085–1086,
1971.
McElhinny, M. W., S. R. Taylor, and D. J. Stevenson, Limits to
the expansion of the Earth, Moon, Mars and Mercury and
to changes in the gravitational constant, Nature, 271, 316–
321, 1978.
McGugan, A., Possible use of algal stromatolite rhythms in
geochronology, Spec. Pap. Geol. Soc. Am., 115, 145, 1968.
Mohr, R. E., Measured periodicities of the Biwabik (Precambrian)
stromatolites and their geophysical significance, in
Growth Rhythms and the History of the Earth’s Rotation,
edited by G. D. Rosenberg and S. K. Runcorn, pp. 43–56,
Wiley-Interscience, New York, 1975.
Munk, W., Once again: Tidal friction, Q. J. R. Astron. Soc., 9,
352–375, 1968.
Munk, W. H., and G. J. F. MacDonald, The Rotation of the
Earth, 323 pp., Cambridge Univ. Press, New York, 1960.
Nio, S.-D., and C.-S. Yang, Diagnostic attributes of clastic tidal
deposits: A review, in Clastic Tidal Sedimentology, edited by
D. G. Smith et al., Mem. Can. Soc. Pet. Geol., 16, 3–27, 1991.
Nishizawa, A., T. Sato, J. Kasahara, and K. Fujioka, Hydrothermal
activity correlated with tides on the TAG mound,
MAR, detected by ocean bottom hydrophone, Eos Trans.
AGU, 76(46), Fall Meet. Suppl., F574, 1995.
Oost, A. P., H. de Haas, F. IJnsen, J. M. van den Boogert, and
P. L. de Boer, The 18.6 yr nodal cycle and its impact on tidal
sedimentation, Sediment. Geol., 87, 1–11, 1993.
O¨
zsoy, E., Ebb-tidal jets: A model of suspended sediment and
mass transport at tidal inlets, Estuarine Coastal Shelf Sci.,
22, 45–62, 1986.
Pannella, G., Paleontological evidence on the Earth’s rotational
history since early Precambrian, Astrophys. Space Sci.,
16, 212–237, 1972a.
Pannella, G., Precambrian stromatolites as paleontological
clocks, Int. Geol. Congr. Rep. Sess., 24th, sect. 1, 50–57,
1972b.
Pariwono, J. I., J. A. T. Bye, and G. W. Lennon, Long-period
variations of sea-level in Australasia, Geophys. J. R. Astron.
Soc., 87, 43–54, 1986.
Preiss, W. V. (Compiler), The Adelaide Geosyncline, S. Aust.
Dep. Mines Energy Bull., 53, 438 pp., 1987.
Reading, H. G. (Ed.), Sedimentary Environments and Facies,
557 pp., Blackwell, Malden, Mass., 1978.
Reineck, H.-E., and I. B. Singh, Depositional Sedimentary Environments,
439 pp., Springer-Verlag, New York, 1973.
Roep, Th. B., Neap-spring cycles in a subrecent tidal channel
fill (3665 BP) at Schoorldam, NW Netherlands, Sediment.
Geol., 71, 213–230, 1991.
58 c Williams: EARTH’S PRECAMBRIAN ROTATION 38, 1 / REVIEWS OF GEOPHYSICS
Rosenberg, G. D., and S. K. Runcorn (Eds.), Growth Rhythms
and the History of the Earth’s Rotation, 559 pp., John Wiley,
New York, 1975.
Runcorn, S. K., Changes in the Earth’s moment of inertia,
Nature, 204, 823–825, 1964.
Runcorn, S. K., Change in the moment of inertia of the Earth
as a result of a growing core, in The Earth-Moon System,
edited by B. G. Marsden and A. G. W. Cameron, pp. 82–92,
Plenum, New York, 1966.
Runcorn, S. K., Palaeontological data on the history of the
Earth-Moon system, Phys. Earth Planet. Inter., 20, p1–p5,
1979.
Scrutton, C. T., Periodic growth features in fossil organisms
and the length of the day and month, in Tidal Friction and
the Earth’s Rotation, edited by P. Brosche and J. Su¨ndermann,
pp. 154–196, Springer-Verlag, New York, 1978.
Scrutton, C. T., and R. G. Hipkin, Long-term changes in the
rotation rate of the Earth, Earth Sci. Rev., 9, 259–274, 1973.
Smith, D. G., G. E. Reinson, B. A. Zaitlin, and R. A. Rahmani
(Eds.), Clastic Tidal Sedimentology, Mem. Can. Soc. Pet.
Geol., 16, 387 pp., 1991.
Smith, N. D., A. C. Phillips, and R. D. Powell, Tidal drawdown:
A mechanism for producing cyclic sediment laminations in
glaciomarine deltas, Geology, 18, 10–13, 1990.
Sonett, C. P., and M. A. Chan, Neoproterozoic Earth-Moon
dynamics: Rework of the 900 Ma Big Cottonwood Canyon
tidal rhythmites, Geophys. Res. Lett., 25, 539–542, 1998.
Sonett, C. P., E. P. Kvale, A. Zakharian, M. A. Chan, and T. M.
Demko, Late Proterozoic and Palaeozoic tides, retreat of
the Moon, and rotation of the Earth, Science, 273, 100–104,
1996a.
Sonett, C. P., A. Zakharian, and E. P. Kvale, Ancient tides and
length of day: Correction, Science, 274, 1068–1069, 1996b.
Su¨ndermann, J., The resonance behaviour of the world ocean,
in Tidal Friction and the Earth’s Rotation II, edited by P.
Brosche and J. Su¨ndermann, pp. 165–174, Springer-Verlag,
New York, 1982.
Tessier, B., Upper intertidal rhythmites in the Mont-Saint-
Michel Bay (NW France): Perspectives for paleoreconstruction,
Mar. Geol., 110, 355–367, 1993.
Trendall, A. F., Varve cycles in the Weeli Wolli Formation of
the Precambrian Hamersley Group, Western Australia,
Econ. Geol., 68, 1089–1097, 1973.
Trendall, A. F., The Hamersley Basin, in Iron-Formation: Facts
and Problems, edited by A. F. Trendall and R. C. Morris,
pp. 69–129, Elsevier Sci., New York, 1983.
Trendall, A. F., and J. G. Blockley, The iron formations of the
Precambrian Hamersley Group, Western Australia, Bull.
Geol. Surv. West. Aust., 119, 366 pp., 1970.
Vanyo, J. P., and S. M. Awramik, Stromatolites and Earth-
Sun-Moon dynamics, Precambrian Res., 29, 121–142, 1985.
Visser, M. J., Neap-spring cycles reflected in Holocene subtidal
large-scale bedform deposits: A preliminary note, Geology,
8, 543–546, 1980.
von Brunn, V., and T. R. Mason, Siliciclastic-carbonate tidal
deposits from the 3000 m.y. Pongola Supergroup, South
Africa, Sediment. Geol., 18, 245–255, 1977.
Wahr, J. M., The Earth’s rotation, Ann. Rev. Earth Planet. Sci.,
16, 231–249, 1988.
Walker, J. C. G., and K. J. Zahnle, Lunar nodal tide and
distance to the Moon during the Precambrian, Nature, 320,
600–602, 1986.
Walter, M. R. (Ed.), Stromatolites, 790 pp., Elsevier Sci., New
York, 1976.
Watchorn, M. B., Fluvial and tidal sedimentation in the 3000
Ma Mozaan Basin, South Africa, Precambrian Res., 13,
27–42, 1980.
Webb, D. J., On the reduction in tidal dissipation produced by
increases in the Earth’s rotation rate and its effect on the
long-term history of the Moon’s orbit, in Tidal Friction and
the Earth’s Rotation II, edited by P. Brosche and J. Su¨ndermann,
pp. 210–221, Springer-Verlag, New York, 1982.
Wells, J. W., Coral growth and geochronometry, Nature, 197,
948–950, 1963.
Wells, J. W., Problems of annual and daily growth-rings in
corals, in Palaeogeophysics, edited by S. K. Runcorn, pp.
3–9, Academic, San Diego, Calif., 1970.
Williams, G. E., Late Precambrian tidal rhythmites in South
Australia and the history of the Earth’s rotation, J. Geol.
Soc. London, 146, 97–111, 1989a.
Williams, G. E., Precambrian tidal sedimentary cycles and
Earth’s paleorotation, Eos Trans. AGU, 70, 33 and 40–41,
1989b.
Williams, G. E., Tidal rhythmites: Geochronometers for the
ancient Earth-Moon system, Episodes, 12, 162–171, 1989c.
Williams, G. E., Tidal rhythmites: Key to the history of the
Earth’s rotation and the lunar orbit, J. Phys. Earth, 38,
475–491, 1990.
Williams, G. E., Upper Proterozoic tidal rhythmites, South
Australia: Sedimentary features, deposition, and implications
for the earth’s paleorotation, in Clastic Tidal Sedimentology,
edited by D. G. Smith et al., Mem. Can. Soc. Pet.
Geol., 16, 161–177, 1991.
Williams, G. E., History of Earth’s rotation and the Moon’s
orbit: A key datum from Precambrian tidal strata in Australia,
Aust. J. Astron., 5, 135–147, 1994.
Williams, G. E., Precambrian length of day and the validity of
tidal rhythmite paleotidal values, Geophys. Res. Lett., 24,
421–424, 1997.
Williams, G. E., Late Neoproterozoic periglacial aeolian sand
sheet, Stuart Shelf, South Australia, Aust. J. Earth Sci., 45,
733–741, 1998a.
Williams, G. E., Precambrian tidal and glacial clastic deposits:
Implications for Precambrian Earth-Moon dynamics and
palaeoclimate, Sediment. Geol., 120, 55–74, 1998b.
Yoder, C. F., Astrometric and geodetic properties of Earth and
the solar system, in Global Earth Physics: A Handbook of
Physical Constants, edited by T. J. Ahrens, AGU Ref. Shelf,
1, 1–31, 1995.
Should I go on? Or are you willing to concede that I can cite a wider range of peer reviewed literature to support my argument then you can?
So much for no evidence.