Let's look at Einstein's train thought experiment in Chapter 9. The Relativity of Simultaneity. Einstein, Albert. 1920. Relativity: The Special and General Theory.
Einstein conveniently forgot to put numbers to the thought experiment, so let's do it for him, shall we?
The observer on the train measures the time it takes light to go from the rear of the train car to the front of the train car, which is 11.9915 meters in length in the train frame. Light takes .00000004 seconds to travel the length of the train. That means the absolute velocity of the train is 4,958 m/s.
The observer on the tracks measures the time it takes light to travel the distance between two clocks on the track, which is 1 meter. It takes light .0000000033356409519815204957557671447492 seconds to travel the distance, which means the track has an absolute zero velocity.
It is 10 meters from A to B on the train in the train frame, and 10 meters from A to B on the embankment in the embankment frame. Both observers are at the midpoint between A and B in their respective frames.
Lightening strikes A and B as the two points on the train coincide with the two points on the embankment.
Light takes .000000016678204759907602478778835723746 seconds for each light from A and B to strike the embankment observer. The embankment observer was struck simultaneously from each light at precisely .000000016678204759907602478778835723746 seconds after 12:00:00. That means the strikes occurred at A and B at exactly 12:00:00.
It takes .00000001667792893852027063502108370407 seconds for light to travel from B on the train to the train observer at the midpoint. It takes .000000016678480590418212900804736688488 seconds for light to travel from A on the train to the midpoint observer on the train.
So, the train observer had the light from B impact him .00000000000055165189794226578365298441767877 seconds before the light from A impacted him.
Since the light from B impacted the train observer .00000001667792893852027063502108370407 seconds after 12:00:00 and it took light .00000001667792893852027063502108370407 seconds to travel from B to his midpoint position, the train observer concludes the strike occurred at B at exactly 12:00:00. Since the light from A impacted the train observer .000000016678480590418212900804736688488 seconds after 12:00:00 and it took light .000000016678480590418212900804736688488 seconds to travel from A to his midpoint position, the train observer concludes the strike occurred at A at exactly 12:00:00.
So both observers acknowledge that the strikes occurred at exactly 12:00:00 at A and B. The embankment observer had both lights hit him simultaneously, and the train observer had the lights hit him at different times due to his 4,958 m/s velocity.
Absolute simultaneity!!!