You may want to peruse the following, river.
Notice that the resulting "
image" is nearly identical to what the hunt was expected to find.
You might also take note that the "
image" was "created" from
data procured from Radio Telescopes - NOT Optical Telescopes.
https://www.nature.com/news/how-to-hunt-for-a-black-hole-with-a-telescope-the-size-of-earth-1.21693
"How to hunt for a black hole with a telescope the size of Earth
Astronomers hope to grab the first images of an event horizon — the point of no return.
- Here's how to catch a black hole. First, spend many years enlisting eight of the top radio observatories across four continents to join forces for an unprecedented hunt. Next, coordinate plans so that those observatories will simultaneously turn their attention to the same patches of sky for several days. Then, collect observations at a scale never before attempted in science — generating 2 petabytes of data each night.
This is the audacious plan for next month’s trial of the Event Horizon Telescope (EHT), a team-up of radio telescopes stationed across the globe to create a virtual observatory nearly as big as Earth. And researchers hope that when they sift through the mountain of data, they will capture the first details ever recorded of the black hole at the centre of the Milky Way, as well as pictures of a much larger one in the more distant galaxy M87.
The reason this effort takes so much astronomical firepower is that these black holes are so far from Earth that they should appear about as big as a bagel on the surface of the Moon, requiring a resolution more than 1,000 times better than that of the Hubble Space Telescope. But even if researchers can nab just a few, blurry pixels, that could have a big impact on fundamental physics, astrophysics and cosmology. The EHT aims to close in on each black hole’s event horizon, the surface beyond which gravity is so strong that nothing that crosses it can ever climb back out. By capturing images of what happens outside this zone, scientists will be able to put Einstein’s general theory of relativity to one of its most stringent tests so far. The images could also help to explain how some supermassive black holes produce spectacularly energetic jets and rule over their respective galaxies and beyond.
But first, the weather will have to cooperate. The EHT will need crystal-clear skies at all eight locations simultaneously, from Hawaii to the Andes, and from the Pyrenees to the South Pole. These and other constraints mean that the team gets only one two-week window every year to make an attempt. “Everything has to be just right,” says EHT director Sheperd Doeleman, an astrophysicist at Harvard University in Cambridge, Massachusetts.
“Radio astronomers relish the challenge of doing the almost impossible,” says Roger Blandford, an astrophysicist at Stanford University in California who is not part of the collaboration. And the EHT could present them with their toughest challenge yet.
Monsters of the Universe
Astronomers have known since the 1970s that an odd source of radiation lurks in the heart of the Milky Way. Radio telescopes had picked up an unusually compact object in the dusty central region of the Galaxy, within the constellation Sagittarius. They named the object Sagittarius A∗ — Sgr A∗ for short — and eventually gathered compelling evidence that it was a supermassive black hole, with a mass equal to that of about 4 million Suns. The black hole M87∗ in the centre of the galaxy M87 is even larger, at some 6 billion solar masses. In terms of angular size in the sky, these two have the largest known event horizons of any black holes.
Although scientists have a pretty good idea of how smaller black holes can form, no one knows for sure how these supermassive monsters develop. And for a long time, astronomers doubted that they could achieve the resolution required to image them in any detail.
The challenge comes down to basic optics. The resolution of a telescope depends mostly on its width, or aperture, and on the wavelength of the light at which it is observing. Doubling the width of the telescope allow scientists to resolve details half as wide, and so does halving the wavelength. At wavelengths of 1.3 or 0.87 millimetres — the only radiation bands that do not get absorbed by the atmosphere or scattered by interstellar dust and hot gas — calculations suggested that it would take a radio dish much larger than Earth to image Sgr A∗ or M87∗.
But in the late 1990s, astrophysicist Heino Falcke, then at the Max Planck Institute for Radio Astronomy in Bonn, Germany, and his collaborators pointed out that the optical distortion caused by a black hole’s gravity would act like a lens, magnifying Sgr A∗ by a factor of five or so
1. That was good news, because it meant that Sgr A∗ might be within the reach of very-long-baseline interferometry (VLBI) on Earth. This is a technique that integrates multiple observatories into one virtual telescope — with an effective aperture as big as the distance between them.
The reason that there is any hope of imaging Sgr A∗, and the larger M87∗, is that they are surrounded by superheated plasma, possibly the residue of stars that did not get swallowed up outright but got torn apart under the intense gravitational stress. The gas forms a rapidly rotating ‘accretion disk’, with its inner parts slowly spiralling in. Falcke and his colleagues reckoned that a VLBI network spread along the entire globe, and working at around 1 mm wavelength, should be just about sensitive enough to resolve the shadow cast by Sgr A∗ against the halo of gas of the accretion disk.
The team also made the first simulations of what such a network might see. Contrary to most artistic depictions of black holes, the accretion disk does not disappear behind the object the way Saturn’s rings can partly hide behind the planet. Around a black hole, there’s no hiding: gravity warps space-time, and here the effect is so extreme that
light rays go around the black hole, showing multiple distorted images of what lies behind it. This should make the accretion disk appear to wrap around the black hole’s shadow like a halo. (The 2014 hit
Interstellar was the first movie to accurately depict this kind of warping of light around a black hole.) "
https://www.nature.com/news/how-to-hunt-for-a-black-hole-with-a-telescope-the-size-of-earth-1.21693